From
Project Euler:
In the 20×20 grid below, four numbers along a diagonal line have been marked in red.
08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48
The product of these numbers is 26 × 63 × 78 × 14 = 1788696.
What is the greatest product of four adjacent numbers in the same direction (up, down, left, right, or diagonally) in the 20×20 grid?
This one doesn't really require any trickery, and can even be done by hand. That goes against our spirit of writing code to solve everything though, so here's a solution. We scan through each row except for the last 3, collecting the products in four directions: horizontally, vertically, and the diagonal directions left and right. Then we just take the max of all these products:
(def Grid
[[ 8 2 22 97 38 15 0 40 0 75 4 5 7 78 52 12 50 77 91 8]
[49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 4 56 62 0]
[81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 3 49 13 36 65]
[52 70 95 23 4 60 11 42 69 24 68 56 1 32 56 71 37 2 36 91]
[22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80]
[24 47 32 60 99 3 45 2 44 75 33 53 78 36 84 20 35 17 12 50]
[32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70]
[67 26 20 68 2 62 12 20 95 63 94 39 63 8 40 91 66 49 94 21]
[24 55 58 5 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72]
[21 36 23 9 75 0 76 44 20 45 35 14 0 61 33 97 34 31 33 95]
[78 17 53 28 22 75 31 67 15 94 3 80 4 62 16 14 9 53 56 92]
[16 39 5 42 96 35 31 47 55 58 88 24 0 17 54 24 36 29 85 57]
[86 56 0 48 35 71 89 7 5 44 44 37 44 60 21 58 51 54 17 58]
[19 80 81 68 5 94 47 69 28 73 92 13 86 52 17 77 4 89 55 40]
[ 4 52 8 83 97 35 99 16 7 97 57 32 16 26 26 79 33 27 98 66]
[88 36 68 87 57 62 20 72 3 46 33 67 46 55 12 32 63 93 53 69]
[ 4 42 16 73 38 25 39 11 24 94 72 18 8 46 29 32 40 62 76 36]
[20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 4 36 16]
[20 73 35 29 78 31 90 1 74 31 49 71 48 86 81 16 23 57 5 54]
[ 1 70 54 71 83 51 54 69 16 92 33 48 61 43 52 1 89 19 67 48]])
(def N (count Grid))
(defn search []
(apply max
(for [x (range N)
y (range (- N 4))
:let
[horiz (if (< x (- N 4))
(->> (range 4)
(map #(nth (nth Grid y) (+ x %)))
(reduce *))
0)
vert (if (< y (- N 4))
(->> (range 4)
(map #(nth (nth Grid (+ y %)) x))
(reduce *))
0)
ldiag (if (and (>= x 3)
(< y (- N 4)))
(->> (range 4)
(map #(nth (nth Grid (+ y %)) (- x %)))
(reduce *))
0)
rdiag (if (and (< x (- N 4))
(< y (- N 4)))
(->> (range 4)
(map #(nth (nth Grid (+ y %)) (+ x %)))
(reduce *))
0)]]
(max horiz vert ldiag rdiag))))
This runs and gives the correct result (takes about 5s for lein/JVM to get ready):
$ time lein run
70600674
real 0m5.800s
user 0m7.340s
sys 0m0.404s
No comments:
Post a Comment